
22 hours ago
iMasons CEO Santiago Suinaga on the Future of Sustainable AI Data Centers
For this episode of the DCF Show podcast, host Matt Vincent, Editor in Chief of Data Center Frontier, is joined by Santiago Suinaga, CEO of Infrastructure Masons (iMasons), to explore the urgent challenges of scaling data center construction while maintaining sustainability commitments, among other pertinent industry topics.
The AI Race and Responsible Construction
"Balancing scale and sustainability is key because the AI race is real," Suinaga emphasizes. "Forecasted capacities have skyrocketed to meet AI demand. Hyperscale end users and data center developers are deploying high volumes to secure capacity in an increasingly constrained global market."
This surge in demand pressures the industry to build faster than ever before. Yet, as Suinaga notes, speed and sustainability must go hand in hand. "The industry must embrace a build fast, build smart mentality. Leveraging digital twin technology, AI-driven design optimization, and circular economy principles is critical."
Sustainability, he argues, should be embedded at every stage of new builds, from integrating low-carbon materials to optimizing energy efficiency from the outset. "We can't afford to compromise sustainability for speed. Instead, we must integrate renewable energy sources and partner with local governments, utilities, and energy providers to accelerate responsible construction."
A key example of this thinking is peak shaving—using redundant infrastructure and idle capacities to power the grid when data center demand is low. "99.99% of the time, this excess capacity can support local communities, while ensuring the data center retains prioritized energy supply when needed."
Addressing Embodied Carbon and Supply Chain Accountability
Decarbonization is a cornerstone of iMasons' efforts, particularly through the iMasons Climate Accord. Suinaga highlights the importance of tackling embodied carbon—the emissions embedded in data center construction materials and IT hardware. "We need standardized reporting metrics and supplier accountability to drive meaningful change," he says. "Greater transparency across the supply chain can be achieved through carbon labeling of materials and stricter procurement policies."
To mitigate embodied emissions, companies should prioritize suppliers with validated Environmental Product Declarations (EPDs) and invest in low-carbon alternatives like green concrete and recycled steel. "Collaboration across the industry will be essential to drive policy incentives for greener supply chains," Suinaga asserts.
The Role of Modular and Prefabricated Builds
As the industry seeks more efficient construction methods, modular and prefabricated builds are emerging as game changers. "They significantly reduce construction waste, improve quality control, and shorten deployment times," Suinaga explains. "By shifting a large portion of the build process to controlled environments, we can improve worker safety and optimize material usage. Companies leveraging prefabrication will gain a competitive edge in both cost savings and sustainability."
Modular construction also presents financial advantages. "It allows for deferred CapEx investments, creating attractive internal rates of return (IRRs) for investors while reducing the risk of oversupply by aligning capacity with demand," Suinaga notes. However, he acknowledges that the approach has challenges, including potential supply chain constraints and quick time-to-market pressures during demand spikes. "Maintaining a recurrent production cycle and closely monitoring market conditions are key to ensuring capacity planning aligns with real-time needs."
Innovation in Cooling and Water Use
With AI workloads driving increasing power densities, the industry is rapidly shifting toward liquid cooling, immersion cooling, and heat reuse strategies. "We’re seeing innovations in direct-to-chip cooling and closed-loop water systems that significantly reduce water consumption," Suinaga says. "Some data centers are capturing and repurposing waste heat to provide energy to nearby facilities—an approach that needs to be scaled."
Immersion cooling, he adds, offers the potential to shrink data center footprints and dramatically improve Power Usage Effectiveness (PUE). "A hybrid approach combining air and liquid cooling is key," Suinaga explains. "There’s still uncertainty around the right mix of technologies, as hyperscalers need to support not just AI but also continued cloud growth. Flexibility in cooling design is now essential to accommodate a diverse range of workloads."
Regulatory Pressures and the Future of Sustainability Standards
Regulatory frameworks such as the SEC’s climate disclosure rules and Europe’s Corporate Sustainability Reporting Directive (CSRD) are pushing data center operators toward greater transparency. Suinaga believes these measures will enforce more accurate sustainability reporting and drive greener investment decisions. "This will push data center operators to adopt more energy-efficient designs early in the planning phase and, in the long term, standardize carbon reporting and create incentives for sustainable practices," he explains.
He also highlights the role of investors and publicly traded companies in enforcing stricter climate reporting requirements across their portfolios. "At iMasons, we are refining existing reporting benchmarks and frameworks to provide the industry with a holistic view of best practices. This is an area where we aim to support data center operators with an analytical approach."
The Road to Net Zero: Overcoming Challenges
Despite ambitious net zero goals, execution remains a significant challenge. "The biggest roadblock to net zero is the availability of truly carbon-free energy and materials at scale," Suinaga states. Achieving net zero requires substantial investment in renewable infrastructure, grid connectivity improvements, and energy storage innovation.
To accelerate progress, he emphasizes the importance of adopting circular economy practices, advocating for renewable energy policy support, and investing in next-generation cooling and power technologies. "The demand from AI is outpacing current power infrastructure and renewable options. While some net zero commitments may be delayed, investing in new technologies and clean energy solutions will ultimately put us back on the path to net zero."
Workforce Development and Addressing the Talent Shortage
The digital infrastructure industry has long faced a talent shortage, which has only become more urgent as demand increases. To help address this challenge, iMasons has launched a new job-matching platform. "It’s designed to bridge the talent gap by connecting skilled professionals with opportunities in digital infrastructure," Suinaga explains. "For job seekers, it’s free to use, providing a streamlined way to match with job listings based on skills, experience, and location."
For employers, iMasons partners gain access to the platform to find vetted candidates efficiently. "At the pace this industry is growing, the current workforce isn’t enough—we need to bring in talent from other industries and create new career pathways. Digital infrastructure is recession-proof and offers tremendous opportunities for growth."
Industry Partnerships Driving Innovation
iMasons has been expanding its partnerships, adding 15 new partners in recent months. "We've welcomed companies from various backgrounds, including AI-driven construction management firms, energy-related companies, and cooling solution providers," Suinaga shares. "iMasons is a hub for industry collaboration, helping to drive innovation across the entire digital infrastructure ecosystem. Our mission is simple: to ensure the industry thrives."
Looking Ahead
As AI accelerates the demand for digital infrastructure, the industry must embrace innovative, responsible strategies to balance scale with sustainability. iMasons, alongside major players in the sector, is committed to ensuring the next generation of data centers are not just fast to deploy but also environmentally responsible.